4,608 research outputs found

    Towards Persistent Storage and Retrieval of Domain Models using Graph Database Technology

    Full text link
    We employ graph database technology to persistently store and retrieve robot domain models.Comment: Presented at DSLRob 2015 (arXiv:1601.00877

    Cooperative Relaying in a Poisson Field of Interferers: A Diversity Order Analysis

    Full text link
    This work analyzes the gains of cooperative relaying in interference-limited networks, in which outages can be due to interference and fading. A stochastic model based on point process theory is used to capture the spatial randomness present in contemporary wireless networks. Using a modification of the diversity order metric, the reliability gain of selection decode-and-forward is studied for several cases. The main results are as follows: the achievable \emph{spatial-contention} diversity order (SC-DO) is equal to one irrespective of the type of channel which is due to the ineffectiveness of the relay in the MAC-phase (transmit diversity). In the BC-phase (receive diversity), the SC-DO depends on the amount of fading and spatial interference correlation. In the absence of fading, there is a hard transition between SC-DO of either one or two, depending on the system parameters.Comment: 5 pages, 2 figures. To be presented at ISIT 201

    Improvement of speech recognition by nonlinear noise reduction

    Full text link
    The success of nonlinear noise reduction applied to a single channel recording of human voice is measured in terms of the recognition rate of a commercial speech recognition program in comparison to the optimal linear filter. The overall performance of the nonlinear method is shown to be superior. We hence demonstrate that an algorithm which has its roots in the theory of nonlinear deterministic dynamics possesses a large potential in a realistic application.Comment: see urbanowicz.org.p

    Tunneling in the self-trapped regime of a two-well Bose-Einstein condensate

    Get PDF
    Starting from a mean-field model of the Bose-Einstein condensate dimer, we reintroduce classically forbidden tunneling through a Bohr-Sommerfeld quantization approach. We find closed-form approximations to the tunneling frequency more accurate than those previously obtained using different techniques. We discuss the central role that tunneling in the self-trapped regime plays in a quantitatively accurate model of a dissipative dimer leaking atoms to the environment. Finally, we describe the prospects of experimental observation of tunneling in the self-trapped regime, both with and without dissipation.We wish to thank Wolfgang Muessel, Markus Oberthaler, Kaspar Sakmann, Andrea Trombettoni, Stephanos Venakides, and Tilman Zibold for helpful discussions. We are also grateful for the hospitality of Joshua E. S. Socolar and the Duke University Physics Department. This work was supported in part by Boston University. D.W. acknowledges support from the Helmholtz Association (Grant No. VH-NG-1025). (Boston University; VH-NG-1025 - Helmholtz Association)First author draf

    Interference and Throughput in Aloha-based Ad Hoc Networks with Isotropic Node Distribution

    Full text link
    We study the interference and outage statistics in a slotted Aloha ad hoc network, where the spatial distribution of nodes is non-stationary and isotropic. In such a network, outage probability and local throughput depend on both the particular location in the network and the shape of the spatial distribution. We derive in closed-form certain distributional properties of the interference that are important for analyzing wireless networks as a function of the location and the spatial shape. Our results focus on path loss exponents 2 and 4, the former case not being analyzable before due to the stationarity assumption of the spatial node distribution. We propose two metrics for measuring local throughput in non-stationary networks and discuss how our findings can be applied to both analysis and optimization.Comment: 5 pages, 3 figures. To appear in International Symposium on Information Theory (ISIT) 201

    Dismissal protection and worker flows in small establishments

    Get PDF
    "Based on a large employer-employee matched data set, the paper investigates the effects of variable enforcement of German dismissal protection legislation on the employment dynamics in small establishments. Specifically, using a difference-in-differences approach, we study the effect of changes in the threshold scale exempting small establishments from dismissal protection provisions on worker flows. In contrast to the predictions of the theory, our results indicate that there are no statistically significant effects of the dismissal protection legislation on worker turnover." (Author's abstract, IAB-Doku) ((en))Kleinbetrieb, Kündigungsschutz, IAB-Linked-Employer-Employee-Datensatz, zwischenbetriebliche Mobilität

    Dynamics of entanglement in a dissipative Bose-Hubbard dimer

    Full text link
    We study the connection between the semiclassical phase space of the Bose-Hubbard dimer and inherently quantum phenomena in this model, such as entanglement and dissipation-induced coherence. Near the semiclassical self-trapping fixed points, the dynamics of Einstein-Podolski-Rosen (EPR) entanglement and condensate fraction consists of beats among just three eigenstates. Since persistent EPR entangled states arise only in the neighborhood of these fixed points, our analysis explains essentially all of the entanglement dynamics in the system. We derive accurate analytical approximations by expanding about the strong-coupling limit; surprisingly, their realm of validity is nearly the entire parameter space for which the self-trapping fixed points exist. Finally, we show significant enhancement of entanglement can be produced by applying localized dissipation.We thank Luca d'Alessio, Pjotrs Gri. sons, and especially Anatoli Polkovnikov for helpful discussions. This work was supported in part by Boston University, by the US National Science Foundation under Grant No. PHYS-1066293, and by a grant of the Max Planck Society to the MPRG Network Dynamics. H. H. acknowledges support by the German Research Foundation under Grant No. HE 6312/1-1. We are also grateful for the hospitality of the Aspen Center for Physics. (Boston University; PHYS-1066293 - US National Science Foundation; Max Planck Society; HE 6312/1-1 - German Research Foundation)First author draf

    Global Phase Space of Coherence and Entanglement in a double-well BEC

    Full text link
    Ultracold atoms provide an ideal system for the realization of quantum technologies, but also for the study of fundamental physical questions such as the emergence of decoherence and classicality in quantum many-body systems. Here, we study the global structure of the quantum dynamics of bosonic atoms in a double-well trap and analyze the conditions for the generation of many-particle entanglement and spin squeezing which have important applications in quantum metrology. We show how the quantum dynamics is determined by the phase space structure of the associated mean-field system and where true quantum features arise beyond this `classical' approximation
    • …
    corecore